Бесперебойное питание Вашей электроники

Резервный источник питания

Для обеспечения бесперебойной работы любого электронного устройства необходимо резервировать питание, или иными словами – вводить в схему дополнительные (резервные) источники электроэнергии. Для гарантированной непрерывной работы требуется как минимум один источник независимого питания. Как правило, это аккумуляторная батарея.

Самое приятное в этой задаче – простота реализации. Для резервирования питания любой маломощной электронной схемы достаточно всего три компонента: выпрямительный диод, резистор и аккумулятор.

Схема резервирования

Схема резервирования питания может выглядеть как-то так:

Рисунок 1. Простая схема резервного питания устройства.

Схема условно состоит из трёх частей: сетевой источник питания (левая часть схемы), к выходным клеммам 2-3 которого подключено электронное устройство (правая часть схемы); параллельно с выходом источника питания подключается аккумулятор GB1 через зарядное сопротивление R1 и нагрузочный диод VD1.

Для нормальной работы схемы напряжение источника питания должно быть чуть выше номинального напряжения аккумулятора GB1. При недостаточном напряжении источника питания аккумулятор GB1 всегда будет в недозаряженном состоянии, что ускорит ухудшение его характеристик.  При напряжении источника питания, значительно превышающего напряжение батареи, будет происходить её перезаряд с преждевременным ухудшением характеристик, и кроме того, при питании устройства от батареи в режиме резервирования питания может наблюдаться недостаток напряжения питания. Это может быть критично для работы схем от стабилизированного питания, не имеющих собственной стабилизации напряжения.

Принцип действия

Представленная к рассмотрению схема имеет два режима работы, которые есть смысл рассматривать:

Нормальный режим питания

Рассмотрим рисунок 2.

 Рисунок 2. Нормальный режим питания схемы.

В нормальном режиме сетевой источник питания обеспечивает энергией электронное устройство и параллельно заряжает аккумуляторную батарею GB1 через зарядное сопротивление R1. Диод VD1 в этом режиме заперт, поскольку на его катоде присутствует повышенный потенциал от источника питания, по отношению к электрическому потенциалу анода, подключенному к аккумуляторной батарее. Это исключает возникновение недопустимо большого тока заряда при сильно разряженной батарее, и перегрузку источника питания. Максимальный ток заряда ограничивает резистор R1. В идеале его нужно подобрать таким образом, чтобы при полном заряде батареи через него протекал ток, равный по величине току утечки батареи.

Стрелками красного цвета показаны токи. Ток источника питания складывается из тока электронного устройства и тока заряда батареи.

Режим резервного питания

Переходим к рисунку 3.

 Рисунок 3. Режим резервного питания.

При исчезновении или значительном снижении напряжения со стороны сетевого источника питания, когда электрический потенциал на катоде диода VD1 становится ниже потенциала его анода, подключенного к аккумулятору, диод открывается и через него течёт основной ток нагрузки, питающий устройство. Через сопротивление R1 так же будет протекать часть тока нагрузки. Ток нагрузки показан стрелками зелёного цвета.

При восстановлении напряжения со стороны сетевого источника питания, электрический потенциал катода снова возрастает, диод запирается, и схема переходит в нормальный режим питания, при котором энергией источника питания снабжается устройство и заряжается аккумуляторная батарея GB1.

 

Если в данной схеме использовать батарею из обычных гальванических элементов питания, то необходимо исключить из схемы резистор R1 для исключения процесса заряда, к которому они не приспособлены. При расходовании энергии элементов, они подлежат замене на новые.