Электрический конденсатор. Основные положения. Часть 2.

Вихри и вихревые структуры

Рисунок 2. Галактическое метазавихрение.

Пространство вселенной можно охарактеризовать как бесконечно протяжённое, не имеющее границ. Скопления эфирных шариков в этом бесконечном пространстве не являются сплошной средой, они напоминают облака. Галактики в пределах «видимой» вселенной расположены в одном облаке эфира. За пределами облака, где пониженная плотность эфирных шариков уже не позволяет передавать механические колебания, ни электромагнитные волны, ни оптическое излучение уже не могут прийти к нам извне и передать информацию о соседних скоплениях эфирных шариков-облаках, даже будь они по близости. Разные облака эфира в пространстве вселенной могут перемещаться друг относительно друга с различными скоростями. Временами такие облака сталкиваются друг с другом и их эфирные шарики при этом интенсивно перемешиваются. Особенно когда столкновение происходит по касательной, встречные потоки эфира, благодаря некоторой вязкости и высокой плотности, на границе и вблизи области касания образуют завихрения. Наиболее крупные завихрения мы наблюдаем сегодня в виде галактик. Системы планет, в частности солнечная, находятся в потоках таких завихрений. Эти завихрения имеют самые разные масштабы. [Буков А.А. Закон Всемирного Выдавливания]

 

Электроны

Рисунок 3. Электрон. 1 и 2 – осевые шарики эфира; 3, 4 и 5 – шарики электронной секции; 0 – ось вращения электрона; W – направление движения шариков электронной секции по кругу.

И на микроуровне тоже возникают завихрения. Простейшее такое завихрение представляет собой три эфирных шарика, перемещающихся друг за другом вокруг одной оси – электронная секция. С обеих сторон плоскости вращения этих шариков поджаты внешним давлением эфира два других шарика. Такая конструкция из пяти шариков немного напоминает волчок. Бегающие друг за другом по кругу шарики не могут разлететься по сторонам из-за того же внешнего давления эфира. Для стабильного существования такой динамической вихревой конструкции необходимо, чтобы движущиеся по круговой траектории шарики обладали достаточной энергией для преодоления касательных столкновений с шариками окружающего эфира.

Такой микро-вихрь и есть электрон. Если по какой-то причине вихрь электрона останавливается, электрон перестаёт существовать (разваливается), а энергия шариков толчком переходит в эфир. При массовой гибели электронов мы наблюдаем светло-синее свечение. Оно возникает в результате возбуждения эфирной среды в точках передачи энергии погибающих электронов эфиру.

 

Атомы

Рисунок 4. Атом водорода. а) – электронная секция; б) – участок торового вихря атома водорода; в) сечение участка торового вихря; г) – участок торового вихря при формировании атома водорода по замкнутой линии; д) - внешний вид атома водорода.

Электронные секции могут формироваться одновременно плотно прилегающими друг к другу, выстраиваясь во вращающийся шнур. Если такой шнур замыкается сам на себя, получается тор. Такая торовихревая структура представляет из себя атом химического элемента. Простейшим, самым коротким таким представителем является атом водорода. Его форма напоминает тор, его длина может иметь разную величину в некоторых пределах. При значительном удлинении тела тора внешнее давление эфира начинает преобладать над силами упругости петли атома, которая может свернуться (смяться). От формы свёрнутости петли атома зависят его свойства. Отсюда различные свойства, проявляемые различными химическими элементами. Более подробно можно ознакомиться в учебниках и книгах по Русской теории - Части 1 и 2Часть 3Часть 4 и Химия - Учебник 1 – Простые вещества и Учебник 2 – Сложные вещества и химические процессы.

 

Электрический потенциал

В эфирной теории скопление электронов представляет из себя газ, подчиняющийся обычным законам пневматики. Давление этого газа, то есть механическое давление электронов друг на друга в какой-либо точке пространства определяет электрический потенциал этой точки.

Электрический потенциал не имеет ни чего общего с таким понятием «легитимной» электротехники как «заряд». Зарядов, как отрицательных, так и положительных в природе не существует вообще, поэтому ни электрон, ни любые другие частицы не обладают зарядами. Электрический потенциал может быть только положительным, либо нулевым. Однако, говоря о сравнительных характеристиках потенциалов различных точек им присваивают полярность. Тут нужно понимать, что отрицательная полярность потенциала точки должна характеризовать относительно низкий потенциал по сравнению с другой точкой. Но современная «легитимная» наука на этот счёт внесла ещё большую путаницу, приняв за направление электрического тока направление движения несуществующих положительных зарядов, противоположно направленных движению реально существующих электронов. Таким образом, если соотнести Русскую теорию к официальной, то общепринятый электрод отрицательной полярности является источником повышенного давления электронов по отношению к положительному, у которого давление электронов, т.е. электрический потенциал ниже.

электроны представляют собой газ со всеми его свойствами; законы движения электронов строго соответствуют законам пневматики. Сжимая пушистые электроны, можно создавать их давление, и оно — такое же, как давление газов; и это давление в электрофизике называют электрическим потенциалом или напряжением. [Русская теория, Часть 1 (раздел 1.5. Электроны и атомы)]

Более подробно с понятием электрического потенциала Вы можете ознакомиться в публикациях по русской физике.

В начало                Назад        ОБСУДИТЬ        Далее                Пропустить тему