Конденсатор с двумя обкладками. Плоский конденсатор.

Наибольшее распространение в технике получили конденсаторы с двумя обкладками. В основе их устройства две обкладки из проводящего материала, разделённые токонепроводящим слоем вакуума или диэлектрика. К обкладкам подключены токопроводящие выводы для удобства монтажа и включения конденсаторов в схему.

Обкладки конденсатора с вакуумным промежутком между ними

При разнесении электродов на значительные расстояния мы получим просто два одиночных электрода, которые очень плохо заряжаются. Тем не менее, такой конденсатор можно зарядить, но его ёмкость будет ничтожна. Как увеличить его ёмкость? Один способ нам уже известен - снизить градиент давлений эфира вблизи поверхности обкладок. У нас есть два металлических электрода, тепловой фон химэлементов металлов которых при одинаковой конструкции имеет одинаковую величину. При полном контакте обкладок полностью исключается градиент давлений. Казалось бы, идеальный вариант, но при этом конденсатор "замкнут накоротко" и неработоспособен. Разнесём обкладки на расстояние двух электронов. В этом случае обкладки разомкнутся, конденсатор станет работоспособен. Столь маленькая щель между обкладками будет наполнена эфиром, но в виду непосредственного контакта с обкладками он будет практически так же возбуждён колебаниями, и не будет создавать градиент давлений. Такой вариант конструкции вряд ли технологически достижим и имеет малый запас электрической прочности, поскольку при увеличении объёма электронов на поверхности до второго слоя произойдёт переход электронов на другую обкладку - электрический пробой. Следует умозрительно увеличить размер промежутка между обкладками до реально возможного минимального предела.

Увеличивая расстояние между обкладками, появится такой вариант, который возможно изготовить при современных технологических мощностях и заданных характеристиках конденсатора. И так, есть две обкладки на некотором расстоянии друг от друга. Материал обкладок своим тепловым фоном с двух сторон в некоторой степени действует на относительно холодный эфир, несколько «разогревая» его. Так в промежутке между обкладками эфир имеет тепловой фон с несколько большей интенсивностью, чем за пределами промежутка. Это несколько «растягивает» область градиента давления эфира, что позволяет сообщить обкладке чуть больше дополнительных свободных электронов. Со второй обкладки необходимо снять как можно больше свободных электронов, чтобы, максимально снизив ее электрический потенциал, получить требуемую разность потенциалов на выводах конденсатора.

При дальнейшем увеличении расстояния между обкладками, влияние теплового фона обкладок на тепловой фон эфира в промежутке заметно снижается и становится ничтожным. Конденсатор становится ещё менее эффективным.

Вакуумные конденсаторы имеют относительно сложные конструктивные особенности и весьма низкую удельную ёмкость по отношению к габаритам. Они получили ограниченное применение, в частности в высоковольтных высокочастотных колебательных контурах радиотрансляционной передающей аппаратуры.

Обкладки конденсатора с заполнением промежутка между ними диэлектриком

Эфир присутствует не только в вакууме, он есть и внутри металла, диэлектрика, и вообще любой другой материи.

Интенсивность колебаний частиц эфира характеризует величину его теплового фона. Чем интенсивнее колебания – тем выше «температура» фона. Внутри веществ эфир так же колеблется, но на его собственный тепловой фон оказывает влияние непрерывное вращение и колебание шнуровых петель атомов, делая его более интенсивным. Так величина теплового фона эфира в любом веществе всегда интенсивнее, чем в вакууме. Чем интенсивнее тепловой фон эфира, тем меньше его плотность, а соответственно и оказываемое им давление.

Возможность накопления на поверхности металлической обкладки свободных электронов ограничена внешним давлением эфира. Так при сообщении металлической обкладке в вакууме незначительного количества дополнительных свободных электронов, сразу попадающих в зону повышенного давления эфира, значительно увеличивается электрический потенциал обкладки, что весьма ограничивает её заряд.

На тепловой фон эфира, находящегося между близко расположенными обкладками оказывает влияние тепловой фон эфира материала обкладок. «Подогретый» эфир между обкладками оказывает несколько меньшее давление, ограничивающее заряд. Это позволяет сообщить одной обкладке конденсатора несколько большее число электронов до достижения обкладкой электрического потенциала, достигающего при заряде одиночной обкладки в вакууме. Одновременное снятие «лишних» свободных электронов со второй обкладки при заряде конденсатора позволяет освободить место для их размещения в процессе разряда конденсатора через замкнутую цепь, когда все свободные электроны «накачанной» обкладки распределяются между обкладками так, что их электрические потенциалы становятся равными.

Давление эфира внутри диэлектрического материала, нанесённого на металлическую обкладку, оказывает значительно меньшее ограничивающее действие на свободные электроны, скапливающиеся на поверхности металлической обкладки в зоне контакта с диэлектриком. В этом случае заряд обкладки дополнительными свободными электронами в большей степени ограничивается свойствами структуры строения и механической прочностью самого диэлектрика.

Рисунок 11. Общее устройство двухвыводных конденсаторов

При размещении диэлектрика между двумя близко расположенными металлическими обкладками (рисунок 11), он играет двойную роль:

 

1.снижает давление эфира на свободные электроны, накапливающиеся в области контакта поверхности обкладки и диэлектрика, что позволяет зарядить конденсатор значительно большим числом дополнительных свободных электронов при достижении обкладкой незначительного электрического потенциала;

2.выполняет роль механической диафрагмы, позволяющей значительно увеличить ёмкость конденсатора при относительно малых значениях толщины диэлектрика.

С первым назначением диэлектрического промежутка мы уже разобрались. Остановимся подробнее на втором.

При производстве конденсаторов, а также при наблюдении за уже работавшими разряженными конденсаторами часто наблюдается их самопроизвольный заряд. Многих это удивляет, хотя на самом деле это происходит со ста процентами работоспособных конденсаторов.

Дело в том, что при производстве диэлектрик образует плотный контакт с обкладками конденсатора. В местах контакта образуется область пониженного давления эфира. Металлические выводы конденсатора контактируют с атмосферным воздухом, который и обладает в некоторой степени диэлектрическими свойствами, но давление эфира в нём приближены к давлению эфира в вакууме, то есть несколько выше. Любой свободный электрон, попадающий на поверхность металлического вывода конденсатора тут же задавливается давлением эфира атмосферы в сторону поверхности металла. Электрон под давлением эфира атмосферы в случае столкновения с электроном, находящимся на присасывающем жёлобе металла оказывает на него давление, по значению превышающее давление эфира на электроны поверхности металлической обкладки со стороны диэлектрика. В результате разности этих давлений, пополнившееся на один свободный электрон, электронное облако смещается в сторону наименьшего давления, т.е. в сторону поверхности, контактирующей с диэлектриком. Так электронное облако обкладки конденсатора увеличивается с каждым свободным электроном, попадающим на вывод конденсатора из атмосферы и растёт в сторону диэлектрика (рисунок 12–а, левая обкладка). Электроны накапливаются в контактном слое диэлектрика, полностью заполняя все свободные ниши, и даже оказывают механическое давление на сам диэлектрик в той степени, которая компенсирует разность давления эфира атмосферы и эфира диэлектрика. Таким образом заряжаются обеобкладки конденсатора. Если процесс идеализировать, обкладки зарядятся до одинаковых электрических потенциалов, вследствие чего разность потенциалов на выводах конденсатора обнаруживаться не будет.

Чаще всего конструктивные погрешности и другие сопутствующие неравноценные условия заряда конденсатора «атмосферным электричеством» заряжают обкладки неравномерно, в результате чего мы можем обнаружить разность потенциалов на выводах даже у ранее разряженного устройства. Поэтому для хранения конденсаторов, особенно высоковольтных с большими значениями электрической ёмкости, производители рекомендуют замыкать их выводы накоротко.

Рисунок 12. Заряд конденсатора и перераспределение электронов в процессе его разряда.

Описанный выше самозаряд обкладок конденсатора на самом деле необходим как последняя стадия производства. Но если при самозаряде возможен неполный заряд ёмкости обкладок, первый полный заряд обкладки конденсатора могут получить как при его тестировании, так и при его первом включении в работу на номинальное напряжение.

Теперь рассмотрим главный механизм работы конденсаторов с относительно большими электрическими ёмкостями (рисунок 12). У рабочего конденсатора между двумя обкладками находится диэлектрик с обоих сторон «поджатый» электронными облаками. Умозрительно диэлектрик между двумя уплотнившимися электронными облаками напоминает диафрагму. «Запасаемые» электроны заполняют все ниши и поры структуры диэлектрика до «упора». Если какой-либо обкладке попытаться сообщить ещё свободный электрон, то это вызовет уплотнение электронного облака этой обкладки, механическое давление от которого передастся через диэлектрик другой облаке, и, если со второй обкладки при уплотнении электронного облака электронам некуда выходить (поскольку со стороны вывода действует давление эфира атмосферы), заряд конденсатора не пойдёт, и свободный электрон не останется на первом выводе, а скорее всего покинет его, мигрировав в атмосферу.

Если при сообщении одной обкладке дополнительного электрона через её вывод, на второй обкладке обеспечить снятие лишнего электрона при уплотнении электронного облака путём искусственного снижения электрического потенциала, то диэлектрик под действием разницы давлений электронных облаков механически сместится (рисунок 12-а). В результате такого смещения его структура немного «разрыхлится» в контакте с поверхностью обкладки более высокого электрического потенциала и уплотнится в контакте с поверхностью сниженного электрического потенциала. Такое механическое смещение диэлектрической диафрагмы имеет упругий характер, в результате чего при заряде конденсатора до определённой разности электрических потенциалов, эти силы упругости поддерживают на обкладках эту разность. Если выводы конденсатора замкнуть или подключить к нагрузке (рисунок 12-б,в), то электроны электронного облака той обкладки, в сторону которой диэлектрическая диафрагма оказывает давление, под действием давления диафрагмы будет перемещаться через замкнутую цепь выводов или через нагрузку в менее напряжённое электронное облако второй обкладки.

При увеличении толщины диэлектрика вследствие его упругости влияние его на процесс заряда в роли диафрагмы будет заметно снижаться, что скажется на уменьшении ёмкости конденсатора, но при этом увеличится диэлектрическая прочность промежутка, и как следствие допустимое рабочее напряжение устройства.

Характеристики материала диэлектрика имеют не маловажное значение при выборе назначения конденсатора. Так конденсаторы с пластичными и жидкими диэлектрическими средами малопригодны для работы в цепях с повышенными частотами, когда твёрдая керамика прекрасно справляется с подобными задачами.

В начало                Назад        ОБСУДИТЬ        Далее                Пропустить тему